Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Drug Metab Pharmacokinet ; 56: 101001, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38643548

RESUMEN

Trastuzumab deruxtecan (T-DXd) is an antibody-drug conjugate used for cancer treatment comprising an anti-human epidermal growth factor receptor type 2 (HER2) antibody and the topoisomerase I inhibitor DXd. The present study investigated the intratumor fate of T-DXd. Fluorescence-labeled T-DXd was found to accumulate in tumors of HER2-positive tumor xenograft mice and was observed to be distributed within lysosomes of in vitro tumor cells in accordance with their HER2 expression. DXd was released by cysteine proteases, including cathepsins, in lysosomal fractions in vitro in response to the pH. Tumor slices obtained from HER2-positive tumor xenograft mice treated with T-DXd were examined by semi-quantitative and three-dimensional immunohistochemical assays using phosphor-integrated dots, which visualized DXd-related signals in the nucleus, the site of topoisomerase I inhibition. In addition, based on the data showing the antibody component of T-DXd barely distributed in the nucleus, it was suggested that the DXd-related signals detected in the nucleus were predominantly derived from free DXd. These observations help support the mode of action of T-DXd from the perspective of drug disposition.

2.
Biopharm Drug Dispos ; 44(5): 380-384, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37534716

RESUMEN

Trastuzumab deruxtecan (T-DXd, DS-8201a) is an antibody-drug conjugate, comprising an anti-HER2 antibody at a drug-to-antibody ratio of 7-8 with the topoisomerase I inhibitor DXd. In this study, the concentrations of antibody-conjugated DXd and total antibody were determined and observed to decrease over time following intravenous administration of T-DXd to monkeys. The drug-to-antibody ratio of T-DXd also decreased in a time-dependent manner, which reached approximately 2.5 in 21 days after administration. It was suggested that antibody-conjugated DXd of T-DXd was relatively stable in vivo compared with that of other reported antibody-drug conjugates.

3.
Eur J Drug Metab Pharmacokinet ; 48(5): 541-552, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37530974

RESUMEN

BACKGROUND AND OBJECTIVE: Fc fusion is an effective strategy for extending the half-lives of therapeutic proteins. This study aimed to evaluate the applicability of a human pharmacokinetics prediction method for Fc-fusion proteins by extending on reported methods for monoclonal antibodies (mAbs). METHODS: To predict human pharmacokinetic profiles following intravenous (IV) dosing, the pharmacokinetic data for 11 Fc-fusion proteins in monkeys were analysed by two approaches: a species-invariant time method with a range of allometric exponents in clearance (CL, 0.7-1.0) and a two-compartment model reported for mAbs. The pharmacokinetic profiles following subcutaneous (SC) dosing were predicted by simple dose normalisation from monkeys or using the geometric means of the absorption rate constant (Ka) and bioavailability (BA) for mAbs or Fc-fusion proteins in humans and compared. RESULTS: In the case of IV administration, the area under the curve could be predicted for more than 85% of Fc-fusion proteins within a twofold difference from the observed value using the species-invariant time method (scaling exponent for CL, 0.95). For SC dosing, incorporating the geometric means of absorption parameters for both mAbs (BA 68.2%, Ka 0.287 day-1) and Fc-fusion proteins (BA 63.0%, Ka 0.209 day-1) in humans provided better accuracy than simple normalisation from monkeys. CONCLUSION: We have successfully predicted the human pharmacokinetic profiles of Fc-fusion proteins for both IV and SC administration within twofold of the observed value from monkey pharmacokinetic data by extending on reported methods for mAbs. This method will facilitate drug discovery and development of Fc-fusion proteins.


Asunto(s)
Anticuerpos Monoclonales , Modelos Biológicos , Humanos , Animales , Anticuerpos Monoclonales/farmacocinética , Disponibilidad Biológica , Administración Intravenosa , Haplorrinos , Farmacocinética
4.
Drug Metab Dispos ; 51(1): 67-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273823

RESUMEN

In a previous study on the human mass balance of DS-1971a, a selective NaV1.7 inhibitor, its CYP2C8-dependent metabolite M1 was identified as a human disproportionate metabolite. The present study assessed the usefulness of pharmacokinetic evaluation in chimeric mice grafted with human hepatocytes (PXB-mice) and physiologically based pharmacokinetic (PBPK) simulation of M1. After oral administration of radiolabeled DS-1971a, the most abundant metabolite in the plasma, urine, and feces of PXB-mice was M1, while those of control SCID mice were aldehyde oxidase-related metabolites including M4, suggesting a drastic difference in the metabolism between these mouse strains. From a qualitative perspective, the metabolite profile observed in PXB-mice was remarkably similar to that in humans, but the quantitative evaluation indicated that the area under the plasma concentration-time curve (AUC) ratio of M1 to DS-1971a (M1/P ratio) was approximately only half of that in humans. A PXB-mouse-derived PBPK model was then constructed to achieve a more accurate prediction, giving an M1/P ratio (1.3) closer to that in humans (1.6) than the observed value in PXB-mice (0.69). In addition, simulated maximum plasma concentration and AUC values of M1 (3429 ng/ml and 17,116 ng·h/ml, respectively) were similar to those in humans (3180 ng/ml and 18,400 ng·h/ml, respectively). These results suggest that PBPK modeling incorporating pharmacokinetic parameters obtained with PXB-mice is useful for quantitatively predicting exposure to human disproportionate metabolites. SIGNIFICANCE STATEMENT: The quantitative prediction of human disproportionate metabolites remains challenging. This paper reports on a successful case study on the practical estimation of exposure (C max and AUC) to DS-1971a and its CYP2C8-dependent, human disproportionate metabolite M1, by PBPK simulation utilizing pharmacokinetic parameters obtained from PXB-mice and in vitro kinetics in human liver fractions. This work adds to the growing knowledge regarding metabolite exposure estimation by static and dynamic models.


Asunto(s)
Aldehído Oxidasa , Hígado , Humanos , Ratones , Animales , Aldehído Oxidasa/metabolismo , Citocromo P-450 CYP2C8/metabolismo , Ratones SCID , Hígado/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Biológicos
5.
Biopharm Drug Dispos ; 43(5): 213-217, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36151066

RESUMEN

The estimation of the contributions of UDP-glucuronosyl transferase (UGT) isoforms to the overall metabolism still suffers from technical difficulties due to limited information on enzyme levels in recombinant systems and specific inhibitors, unlike the case for cytochrome P450s (CYPs). The protein expression levels of UGT in both recombinant system microsomes (RM) and human liver microsomes (HLM) were quantified using liquid chromatography-tandem mass spectrometry, and the relative expression factor (REF) value of HLM to recombinant microsomes was estimated to evaluate the fractions of drug metabolism by a single UGT enzyme (fmUGT) of UGT substrates. The REF values of UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17 were 0.228, 0.0714, 0.0665, 0.420, 0.118, and 0.0442, respectively. fmUGTs in HLM were estimated for several typical UGT substrates utilizing these values and metabolic clearances in RM. These values were comparable to the reported values estimated by various methods. This study provided useful information on REF values, which promote a robust estimation of fmUGT values for UGT substrates when evaluating the contribution of UGT isoforms to total metabolic clearance.


Asunto(s)
Glucuronosiltransferasa , Isoenzimas , Humanos , Isoenzimas/metabolismo , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Tasa de Depuración Metabólica , Cromatografía Liquida , Uridina Difosfato/metabolismo , Glucurónidos/metabolismo
6.
Drug Metab Pharmacokinet ; 45: 100459, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716472

RESUMEN

Our previous study in rats demonstrated that the metabolic pathways of DS-8500a, a novel GPR119 agonist, include cleavage pathways: reductive cleavage of the oxadiazole ring in the liver and hydrolysis of the amide side chain. In the present study, in vivo metabolic profiling in humans and monkeys after the oral administration of two 14C-labeled compounds was performed to investigate species differences of the cleavage pathways. In monkeys, the oxadiazole ring-cleaved metabolites were mainly detected in feces, but not observed in bile, unlike in rats, suggesting that the reductive ring-opening metabolism occurs in the gastrointestinal tract. In vitro incubation with enterobacterial culture media demonstrated that the reductive cleavage of the oxadiazole ring in humans and monkeys was considerably faster than that in rats. The other cleavage metabolite (M20), produced via hydrolysis of the amide side chain, was detected as the major plasma metabolite in humans and monkeys, and its subsequent metabolite (M21) was excreted in feces, whereas M21 was not a major component in rats, indicating a notable species difference in the amide hydrolysis. In conclusion, this study comprehensively revealed the pronounced species difference of the cleavage pathways: reductive ring-opening by intestinal microflora and liver, and amide hydrolysis.


Asunto(s)
Benzamidas , Oxadiazoles , Administración Oral , Animales , Radioisótopos de Carbono , Ciclopropanos , Heces/química , Humanos , Macaca fascicularis/metabolismo , Oxadiazoles/metabolismo , Farmacocinética , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Especificidad de la Especie
7.
Diabetes Ther ; 13(4): 709-721, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35267173

RESUMEN

INTRODUCTION: We previously reported several factors that cross-sectionally correlate with treatment satisfaction in Japanese patients with type 2 diabetes visiting diabetes clinics. The aim of this study is to identify factors associated with longitudinal changes in treatment satisfaction in patients with type 2 diabetes. METHODS: The study included 649 patients with type 2 diabetes treated with oral glucose-lowering agents who completed the first questionnaire in 2016. The collected data included scores from the Diabetes Treatment Satisfaction Questionnaire (DTSQ) and other parameters regarding diabetes treatment. We analyzed 1-year longitudinal changes in DTSQ scores and investigated factors associated with these changes. RESULTS: Univariate linear regression analyses showed that changes in body weight, adherence to diet therapy, adherence to exercise therapy, cost burden, motivation for treatment, regularity of mealtimes, and perceived hypoglycemia correlated with changes in DTSQ scores. On the basis of multiple linear regression analyses, a decrease in hypoglycemia (ß ± SE = - 0.394 ± 0.134, p = 0.0034), cost burden (ß ± SE = - 0.934 ± 0.389, p = 0.017), and an increase in treatment motivation (ß ± SE = 1.621 ± 0.606, p = 0.0077) correlated with DTSQ score increases, suggesting that motivation for treatment had the strongest impact on score increases. Subgroup analyses revealed that an increase in motivation for treatment most significantly correlated with a DTSQ score increase in obese and poor glycemic control groups, regardless of age. CONCLUSION: This is the first longitudinal study clarifying that an increase in motivation for treatment most strongly correlates with an increase in DTSQ score in patients with type 2 diabetes.

8.
Drug Metab Dispos ; 50(3): 235-242, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34930785

RESUMEN

Predicting human disproportionate metabolites is difficult, especially when drugs undergo species-specific metabolism mediated by cytochrome P450s (P450s) and/or non-P450 enzymes. This study assessed human metabolites of DS-1971a, a potent Nav1.7-selective blocker, by performing human mass balance studies and characterizing DS-1971a metabolites, in accordance with the Metabolites in Safety Testing guidance. In addition, we investigated the mechanism by which the major human disproportionate metabolite (M1) was formed. After oral administration of radiolabeled DS-1971a, the major metabolites in human plasma were P450-mediated monoxidized metabolites M1 and M2 with area under the curve ratios of 27% and 10% of total drug-related exposure, respectively; the minor metabolites were dioxidized metabolites produced by aldehyde oxidase and P450s. By comparing exposure levels of M1 and M2 between humans and safety assessment animals, M1 but not M2 was found to be a human disproportionate metabolite, requiring further characterization under the Metabolites in Safety Testing guidance. Incubation studies with human liver microsomes indicated that CYP2C8 was responsible for the formation of M1. Docking simulation indicated that, in the formation of M1 and M2, there would be hydrogen bonding and/or electrostatic interactions between the pyrimidine and sulfonamide moieties of DS-1971a and amino acid residues Ser100, Ile102, Ile106, Thr107, and Asn217 in CYP2C8, and that the cyclohexane ring of DS-1971a would be located near the heme iron of CYP2C8. These results clearly indicate that M1 is the predominant metabolite in humans and a human disproportionate metabolite due to species-specific differences in metabolism. SIGNIFICANCE STATEMENT: This report is the first to show a human disproportionate metabolite generated by CYP2C8-mediated primary metabolism. We clearly demonstrate that DS-1971a, a mixed aldehyde oxidase and cytochrome P450 substrate, was predominantly metabolized by CYP2C8 to form M1, a human disproportionate metabolite. Species differences in the formation of M1 highlight the regio- and stereoselective metabolism by CYP2C8, and the proposed interaction between DS-1971a and CYP2C8 provides new knowledge of CYP2C8-mediated metabolism of cyclohexane-containing substrates.


Asunto(s)
Aldehído Oxidasa , Sulfonamidas , Aldehído Oxidasa/metabolismo , Animales , Citocromo P-450 CYP2C8/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Pirazoles , Pirimidinas/metabolismo , Sulfonamidas/metabolismo
9.
Curr Issues Mol Biol ; 43(3): 1267-1281, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34698059

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients' DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2'-O,4'-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2'-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2'OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.


Asunto(s)
Empalme Alternativo , Distrofina/genética , Oligonucleótidos Antisentido/genética , Animales , Cromatografía Liquida , Masculino , Ratones , Ratones Endogámicos mdx , Estructura Molecular , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Oligodesoxirribonucleótidos/química , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/química , Oligorribonucleótidos/química , Espectrometría de Masas en Tándem , Distribución Tisular
10.
Xenobiotica ; 51(9): 1060-1070, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34330191

RESUMEN

Nonclinical metabolite profiling of DS-1971a, a potent selective NaV1.7 inhibitor, was performed to predict human metabolites.After the oral administration of radiolabelled DS-1971a, the predominant metabolite in mouse plasma was M4, a monoxide at the pyrimidine ring, while the major metabolites with the first and second highest exposure in monkey plasma were M2, a monoxide at the cyclohexane ring, and M11, a demethylated pyrazole metabolite.Incubation studies with liver cytosolic and microsomal fractions in the absence or presence of NADPH indicated that the metabolising enzyme responsible for M4 formation was aldehyde oxidase (AO), while cytochrome P450s (P450s) were responsible for M2 and M11 formation. These results suggest that DS-1971a is a substrate for both AO and P450.When DS-1971a was incubated with liver S9 fractions and NADPH, the most abundant metabolites were M4 in mice, and M2 and M11 in monkeys, indicating that the results of in vitro incubation studies could provide information reflecting the in vivo plasma metabolite profiles in mice and monkeys. The results obtained from the incubation with the human liver S9 fraction and NADPH suggested that a major circulating metabolite in humans is M1, a regioisomer of M2.


Asunto(s)
Aldehído Oxidasa , Microsomas Hepáticos , Aldehído Oxidasa/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Tasa de Depuración Metabólica , Ratones , Microsomas Hepáticos/metabolismo , Especificidad de la Especie
11.
Adv Ther ; 38(3): 1514-1535, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33507500

RESUMEN

INTRODUCTION: This trial was conducted to assess the long-term safety, efficacy, and benefit of early add-on of linagliptin to insulin in patients with type 2 diabetes mellitus (T2DM). METHODS: This trial enrolled 246 subjects. The subjects were randomized to the linagliptin group or the control group and were observed for 156 weeks. After week 16, subjects in the control group were also allowed to add linagliptin to evaluate the benefit of early add-on of linagliptin to insulin. The primary end point was a change in HbA1c from baseline to week 16. Secondary end points included fasting plasma glucose, daily insulin dose, and frequency of adverse events. RESULTS: HbA1c and fasting plasma glucose levels significantly decreased from baseline to week 16 in the linagliptin group compared with the control group. The significant improvement in HbA1c continued until week 52. The daily insulin dose significantly decreased in the linagliptin group compared with the control group. The frequency of hypoglycemia and adverse events was comparable in both groups. CONCLUSIONS: Add-on of linagliptin to insulin was tolerated, improved glycemic control, and reduced the daily insulin dose. This study demonstrates the long-term safety, efficacy and benefit of early add-on of linagliptin to insulin in Japanese T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Método Doble Ciego , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/uso terapéutico , Insulina , Japón , Linagliptina , Resultado del Tratamiento
12.
J Diabetes Investig ; 12(2): 244-253, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32594655

RESUMEN

AIMS/INTRODUCTION: Continuous glucose monitoring (CGM) metrics, such as times in range (TIR) and time below range, have been shown to be useful as clinical targets that complement glycated hemoglobin (HbA1c) for patients with type 2 diabetes mellitus. We investigated the relationships between TIR, glycemic variability and patient characteristics in patients with type 2 diabetes mellitus. MATERIALS AND METHODS: We carried out continuous glucose monitoring in 281 outpatients with type 2 diabetes mellitus who participated in a multicenter cohort (Hyogo Diabetes Hypoglycemia Cognition Complications) study. RESULTS: The results are shown as the median (interquartile range). The age, disease duration and HbA1c were 68 years (62-71 years), 13 years (7-23 years) and 6.9% (6.5-7.5%), respectively. TIR and standard deviation obtained by continuous glucose monitoring worsened significantly with increasing disease duration. Multiple regression analyses showed that disease duration (standard partial regression coefficient, ß = -0.160, P = 0.003), diabetic peripheral neuropathy (ß = -0.106, P = 0.033) and urinary albumin excretion (ß = -0.100, P = 0.043) were useful explanatory factors for TIR. In contrast, HbA1c (ß = -0.398, P < 0.001) and the use of antidiabetic drugs potentially associated with severe hypoglycemia (ß = 0.180, P = 0.028), such as sulfonylureas, glinides and insulin, were useful explanatory factors for time below range in the elderly patients with type 2 diabetes mellitus. CONCLUSIONS: The results of this study suggest that disease duration and diabetic complications are associated with TIR deterioration. In addition, low HbA1c levels and the use of antidiabetic drugs potentially associated with severe hypoglycemia might worsen the time below range in the elderly.


Asunto(s)
Biomarcadores/análisis , Cognición/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hiperglucemia/epidemiología , Hipoglucemia/epidemiología , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/clasificación , Adulto , Anciano , Glucemia/análisis , Femenino , Estudios de Seguimiento , Hemoglobina Glucada/análisis , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/patología , Hipoglucemia/inducido químicamente , Hipoglucemia/patología , Hipoglucemiantes/administración & dosificación , Japón/epidemiología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Tiempo
13.
Diabetol Int ; 11(2): 121-128, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32206482

RESUMEN

BACKGROUND: Our previous pilot study using patients with type 2 diabetes mellitus in one medical clinic showed an association of urinary albumin excretion, a marker of generalized vascular dysfunction and kidney damage, with periodontitis. The purpose of this study was to confirm the association by increasing the number of patients and medical clinics. METHODS: Participants were 2302 patients (59.9% males, aged 29-93 years) with type 2 diabetes mellitus from 25 medical clinics. Their medical records and information about socioeconomic status and health behavior were collected. Periodontal status was assessed in a nearby dental office. Multiple linear regression analyses were conducted to examine the association of log-transformed urinary albumin-to-creatinine ratio with periodontal parameters after adjusting for sociodemographic status, general health conditions, and health behaviors. The analyses were performed in all subjects and subjects with normoalbuminuria only. RESULTS: Multiple linear regression analysis showed that mean probing pocket depth (beta: 0.062), percentage of sites with probing pocket depth of 4 mm or deeper (beta: 0.068), percentage of mobile teeth (beta: 0.055), and severity of periodontitis (beta: 0.049) were significantly (p < 0.05) correlated with log-transformed urinary albumin-to-creatinine ratio after adjusting for possible confounders in all subjects. However, no significant associations between urinary albumin-to-creatinine ratio and periodontal parameters were observed in subjects with normoalbuminuria only. CONCLUSIONS: These results suggest that periodontitis is associated with urinary albumin excretion in patients with type 2 diabetes mellitus. Collaboration between medical and dental healthcare providers is needed for treatment of diabetes and periodontitis.

14.
Drug Metab Dispos ; 48(4): 288-296, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31996361

RESUMEN

A great deal of effort has been being made to improve the accuracy of the prediction of drug-drug interactions (DDIs). In this study, we addressed CYP3A-mediated weak DDIs, in which a relatively high false prediction rate was pointed out. We selected 17 orally administered drugs that have been reported to alter area under the curve (AUC) of midazolam, a typical CYP3A substrate, 0.84-1.47 times. For weak CYP3A perpetrators, the predicted AUC ratio mainly depends on intestinal DDIs rather than hepatic DDIs because the drug concentration in the enterocytes is higher. Thus, DDI prediction using simulated concentration-time profiles in each segment of the digestive tract was made by physiologically based pharmacokinetic (PBPK) modeling software GastroPlus. Although mechanistic static models tend to overestimate the risk to ensure the safety of patients, some underestimation is reported about PBPK modeling. Our in vitro studies revealed that 16 out of 17 tested drugs exhibited time-dependent inhibition (TDI) of CYP3A, and the subsequent DDI simulation that ignored these TDIs provided false-negative results. This is considered to be the cause of past underestimation. Inclusion of the DDI parameters of all the known DDI mechanisms, reversible inhibition, TDI, and induction, which have opposite effects on midazolam AUC, to PBPK model was successful in improving predictability of the DDI without increasing false-negative prediction as trade-off. This comprehensive model-based analysis suggests the importance of the intestine in assessing weak DDIs via CYP3A and the usefulness of PBPK in predicting intestinal DDIs. SIGNIFICANCE STATEMENT: Although drug-drug interaction (DDI) prediction has been extensively performed previously, the accuracy of prediction for weak interactions via CYP3A has not been thoroughly investigated. In this study, we simulate DDIs considering drug concentration-time profile in the enterocytes and discuss the importance and the predictability of intestinal DDIs about weak CYP3A perpetrators.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Mucosa Intestinal/enzimología , Midazolam/farmacocinética , Modelos Biológicos , Administración Oral , Área Bajo la Curva , Simulación por Computador , Inhibidores del Citocromo P-450 CYP3A/administración & dosificación , Interacciones Farmacológicas , Estudios de Factibilidad , Humanos , Midazolam/administración & dosificación , Medición de Riesgo/métodos
15.
Drug Metab Dispos ; 47(11): 1270-1280, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511257

RESUMEN

Endogenous substrates are emerging biomarkers for drug transporters, which serve as surrogate probes in drug-drug interaction (DDI) studies. In this study, the results of metabolome analysis using wild-type and Oct1/2 double knockout mice suggested that N 1-methyladenosine (m1A) was a novel organic cation transporter (OCT) 2 substrate. An in vitro transport study revealed that m1A is a substrate of mouse Oct1, Oct2, Mate1, human OCT1, OCT2, and multidrug and toxin exclusion protein (MATE) 2-K, but not human MATE1. Urinary excretion accounted for 77% of the systemic elimination of m1A in mice. The renal clearance (46.9 ± 4.9 ml/min per kilogram) of exogenously given m1A was decreased to near the glomerular filtration rates by Oct1/2 double knockout or Mate1 inhibition by pyrimethamine (16.6 ± 2.6 and 24.3 ± 0.6 ml/min per kilogram, respectively), accompanied by significantly higher plasma concentrations. In vivo inhibition of OCT2/MATE2-K by a single dose of 7-[(3R)-3-(1-aminocyclopropyl)pyrrolidin-1-yl]-1-[(1R,2S)-2-fluorocyclopropyl]-8-methoxy-4-oxoquinoline-3-carboxylic acid in cynomolgus monkeys resulted in the elevation of the area under the curve of m1A (1.72-fold) as well as metformin (2.18-fold). The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. The renal clearance of m1A in younger (21-45 year old) and older (65-79 year old) volunteers (244 ± 58 and 169 ± 22 ml/min per kilogram, respectively) was about 2-fold higher than the creatinine clearance. The renal clearances of m1A and creatinine were 31% and 17% smaller in older than in younger volunteers. Thus, m1A could be a surrogate probe for the evaluation of DDIs involving OCT2/MATE2-K. SIGNIFICANCE STATEMENT: Endogenous substrates can serve as surrogate probes for clinical drug-drug interaction studies involving drug transporters or enzymes. In this study, m1A was found to be a novel substrate of renal cationic drug transporters OCT2 and MATE2-K. N 1-methyladenosine was revealed to have some advantages compared to other OCT2/MATE substrates (creatinine and N 1-methylnicotinamide). The genetic or chemical impairment of OCT2 or MATE2-K caused a significant increase in the plasma m1A concentration in mice and cynomolgus monkeys due to the high contribution of tubular secretion to the net elimination of m1A. The plasma m1A concentration profile showed low diurnal and interindividual variation in healthy volunteers. Thus, m1A could be a better biomarker of variations in OCT2/MATE2-K activity caused by inhibitory drugs.


Asunto(s)
Adenosina/análogos & derivados , Interacciones Farmacológicas , Riñón/metabolismo , Proteínas de Transporte de Catión Orgánico/fisiología , Adenosina/metabolismo , Adulto , Anciano , Animales , Biomarcadores , Creatinina/metabolismo , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos ICR , Persona de Mediana Edad
16.
ACS Med Chem Lett ; 10(3): 358-362, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30891140

RESUMEN

Derivatization efforts were continued to discover backups for a potent selective PPARγ modulator, DS-6930. In this Letter, the replacement of 2-pyridine ring in DS-6930 with 3- or 4-pyridyl group is reported. As the introduction of substituents on the pyridine ring did not provide potent partial agonists, modifications of benzimidazole ring were explored to discover potent intermediate agonists. 4'-Alkoxy substituted benzimidazoles failed to show potent efficacy in vivo, whereas 7'-fluoro benzimidazole 3g (DS19161384) was found to result in robust plasma glucose reductions with excellent DMPK profiles.

17.
J Pharm Sci ; 108(8): 2756-2764, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30905707

RESUMEN

The present study examined the significance of enterohepatic circulation and the effect of rifampicin [an inhibitor of organic anion-transporting polypeptide 1B (OATP1B)] on the plasma concentrations of bile acid-O-sulfates (glycochenodeoxycholate-O-sulfate, lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate) in monkeys and human liver-transplanted chimeric mice (PXB mouse). Rifampicin significantly increased the area under the curve of bile acid-O-sulfates in monkeys (13-69 times) and PXB mice (13-25 times) without bile flow diversion. Bile flow diversion reduced the concentration of plasma bile acid-O-sulfates under control conditions in monkeys and the concentration of plasma glycochenodeoxycholate-O-sulfate in PXB mice. It also diminished diurnal variation of plasma lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate in PXB mice under control conditions. Bile flow diversion did not affect the plasma concentration of bile acid-O-sulfates in monkeys and PXB mice treated with rifampicin. Plasma coproporphyrin I and III levels were constant in monkeys throughout the study, even with bile flow diversion. This study demonstrated that bile acid-O-sulfates are endogenous OATP1B biomarkers in monkeys and PXB mice. Enterohepatic circulation can affect the baseline levels of plasma bile acid-O-sulfates and modify the effect of OATP1B inhibition.


Asunto(s)
Ácido Glicocólico/análogos & derivados , Ácido Litocólico/análogos & derivados , Transportador 1 de Anión Orgánico Específico del Hígado/antagonistas & inhibidores , Rifampin/farmacología , Ácido Taurolitocólico/análogos & derivados , Animales , Ácido Glicocólico/sangre , Humanos , Ácido Litocólico/sangre , Hígado/metabolismo , Trasplante de Hígado , Macaca fascicularis , Masculino , Ratones , Rifampin/administración & dosificación , Ácido Taurolitocólico/sangre
18.
Pharm Res ; 36(4): 55, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30790061

RESUMEN

There was a miscalculation of coproporphyrin I AUC0-24h in the published article (Volume 35, Number 7). After the correction of AUC0-24h, AUC ratio and R-square were re-calculated. Then, following corrections were made in the abstract, the body, Fig. 3, Fig. 4 and Table 2 in this article.

19.
Xenobiotica ; 49(8): 961-969, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30124356

RESUMEN

A 1,2,4-oxadiazole ring-containing compound DS-8500a was developed as a novel G protein-coupled receptor 119 agonist. In vivo metabolic fates of [14C]DS-8500a differently radiolabeled in the benzene ring or benzamide side carbon in rats were investigated. Differences in mass balances were observed, primarily because after the oxadiazole ring-opening and subsequent ring-cleavage small-molecule metabolites containing the benzene side were excreted in the urine, while those containing the benzamide side were excreted in the bile. DS-8500a was detected at trace levels in urine and bile, demonstrating extensive metabolism prior to urinary/biliary excretion. At least 16 metabolite structures were proposed in plasma, urine, and bile samples from rats treated with [14C]DS-8500a. Formation of a ring-opened metabolite (reduced DS-8500a) in hepatocytes of humans, monkeys, and rats was confirmed; however, it was not affected by typical inhibitors of cytochrome P450s, aldehyde oxidases, or carboxylesterases in human hepatocytes. Extensive formation of the ring-opened metabolite was observed in human liver microsomes fortified with an NADPH-generating system under anaerobic conditions. These results suggest an in vivo unique reductive metabolism of DS-8500a is mediated by human non-cytochrome P450 enzymes.


Asunto(s)
Benzamidas/metabolismo , Ciclopropanos/metabolismo , Redes y Vías Metabólicas , Oxadiazoles/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Administración Oral , Anaerobiosis , Animales , Benzamidas/administración & dosificación , Benzamidas/sangre , Benzamidas/farmacocinética , Radioisótopos de Carbono/química , Ciclopropanos/administración & dosificación , Ciclopropanos/sangre , Ciclopropanos/farmacocinética , Humanos , Macaca fascicularis , Masculino , Oxadiazoles/administración & dosificación , Oxadiazoles/sangre , Oxadiazoles/farmacocinética , Oxidación-Reducción , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
20.
Bioorg Med Chem ; 26(18): 5079-5098, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241907

RESUMEN

The lead identification of a novel potent selective PPARγ agonist, DS-6930 is reported. To avoid PPARγ-related adverse effects, a partial agonist was designed to prevent the direct interaction with helix 12 of PPARγ-LBD. Because the TZD group is known to interact with helix 12, the TZD in efatutazone (CS-7017) was replaced to discover novel PPARγ intermediate partial agonist 8i. The optimization of 8i yielded 13ac with high potency in vitro. Compound 13ac exhibited robust plasma glucose lowering effects comparable to those of rosiglitazone (3 mg/kg) in Zucker diabetic fatty rats. Upon toxicological evaluation, compound 13ac (300 mg/kg) induced hemodilution to a lower extent than rosiglitazone; however, 13ac elevated liver enzyme activities. X-ray crystallography revealed no direct interaction of 13ac with helix 12, and the additional lipophilic interactions are also suggested to be related to the maximum transcriptional activity of 13ac.


Asunto(s)
Descubrimiento de Drogas , Hipoglucemiantes/farmacología , PPAR gamma/agonistas , Administración Oral , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos , Modelos Moleculares , Estructura Molecular , PPAR gamma/metabolismo , Ratas , Ratas Wistar , Ratas Zucker , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA